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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models (2], [27), and 3) point sets with known
correspondence. The reader may consult (6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see (8], [10], [12], [13],
(19, (20], [24], (26], [34), [35], [37], [39), [44], [46], (48],
(53, (58], [59].

Historically, frec-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonstrated effective matching with & Renault auto part
(steering knuckle) in the early 1980's. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community
‘The alternative use of the singular value decomposition (SVD)
algorithm [23], (1], [49] was not as widely known in this time
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large planar regions

o chaoe.

by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
results but remains to be demonstrated for practical use on
complex surfaces.
Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
10 create 2 method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies a smoothness
assumption t0 create a smoothing spline approximation of the
points. Then, a conventional steepest descent algorithm is used
10 rotate and translate the second data set so that it minimizes
the sum of the covariance-weighted = differences between the
points and the surface. His approach is based on a regular
zy-grid structure, and true 3-D point-to-surface distances are
not computed. The steepest-descent approach is a slower
altemative 1o reaching the local minima than our proposed
ICP algorithm described below. Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models (2], [27), and 3) point sets with known
correspondence. The reader may consult (6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see (8], [10], [12], [13],
(19, (20], [24], (26], [34), [35], [37], [39), [44], [46], (48],
(53, (58], [59].

Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonstrated effective matching with & Renault auto part
(steering knuckle) in the early 1980's. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community
‘The alternative use of the singular value decomposition (SVD)
algorithm [23], (1], [49] was not as widely known in this time
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large planar regions

o
matching problem without feature extraction
|y used a nonquaternion appraach to comput
€ Teast squares rotation mi

by investigating shape matching based on generalized shape

polynomials. This demonstrated some interesting theoretical
results but remains to be demonstrated for practical use on
complex surfaces.

Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
10 create 2 method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies a smoothness
assumption to create a smoothing spline approximation of the
points. Then, a conventional steepest descent algorithm is used
10 rotate and translate the second data set so that it minimizes
the sum of the covariance-weighted = di

erences between the
points and the surface. His approach is based on a regular
zy-grid structure, and true 3-D point-to-surface distances are
not computed. The steepest-descent approach is a slower
altemative 1o reaching the local minima than our proposed

P algorithm described below. Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models [2], [27], and 3) point sets with known
correspondence. The reader may consult [6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see (8], (10], [12], [13],
(19], [201, [24), (26, (34135} (37 (39} (441 [46}; (481
(53], 58], [59]

Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonsirated effective matching with a Renault auto part
(steering knuckle) in the early 1980's. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sefs in the computer vision community.
The alternative use of the singular value decomposition (SVD)
algorithm 23], [1], [49) was not as widely known in this time

itation of this work was that it relied
on the probable existence of reasonably large planar regions
within & free-form shape.

Schwartz and Sharir [0] developed a solution (o the free-
form space curve matching problem without feature extraction
in late 1985. They used a nonquaternion approach to comput-
ing the least squares rotation matrix. The method works well

the curves 1o obtain corresponding point sets.

Haralick e al. [28] addressed the 3-D point-sel pose es-
timation problem using robust methods combined with the
least squares SV registration approach, which provided a
robust statstical alternative o the least squares quaternion or

/D point set matching. This algorithm is able to handle
cal outliers and could theoretically be substituted for

statst
our quaternion-based algorithm as long as the determinant of
the orthonormal matrix is strictly a positive one. A recent
conference proceedings [47] contains new contributions on
this subject.

Horn [31) derived an alteative formulation of Favgeras’s
method (18] of least squares quaternion matching that uses
the maximum eigenvalue of a 4 x 4 matrix instead of the
minimum eigenvalue. Horn [30) and Brou (1] also developed
the extended Gaussian image (EGT) methods allowing the
matching of convex and restricted sets of nonconvex shapes
based on surface normal histograms.

‘Taubin (5] has done some interesting work in.the area of
implicit algebraic nonplanar 3-D curve and surface estimation
with applications to position estimation without feature ex-
traction. He describes a method of approximating data points
with, implicit algebralc forms.up. o the.tenth degree. using
an approximate distance metric. Global shapes (not occluded

identificd based . an
the registration transformation can be recovered. The method
is shown to be useful for complete planar curve and space
pes, but it is unclear that the effectiveness generalizes
well to more complicated surfaces, such as terain data

ora
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by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
results but remains 1o be demonstrated for practical use on
complex surfaces.

Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
10 createa method for estimating the motion of the observer
between to range image frames of the same terrain. Given
the set of points, from one frame, he applies a smoothness
assumption to create a smoothing spline approximation of the
points. Then, a conventionsl steepest descent algorithm is used
0 rotate and translate the second data set so that it minimizes
the sum of the eovariance-weighted = differences between the
points and the surface. His approach is based on a regular
xy-grid structure, and true 3-D point-to-surface distances are
not computed. The Steepest-descent, approach is a slower
altemative to reaching the local minima than our proposed
ICP algorithm described below, Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
longer ranges from a simulated range finder. For navigation
range imaging sensors, the uncertainty in data points vary
significantly from the foreground to the background. For high-
accuracy sensors with shallow depths of field, the uncertainty
variation between points is orders of magnitude less and is
of much less concern. Szeliski provides experimental results
for synthetic terrain data and a block. The terrain data motion
test was a simple translation along one axis: a 1-D correlation
problem. His block test did involve six degrees of freedom.
but the block is a very simple shape. Overall, this work
presents some interesting ideas, but the experimental results
are unconvincing for applications.

Hom and Haris [33] also addressed the problem of cs-
timating the exact rigid-body motion of the obscrver given
sequentially digitized range image frames of the same terrain
They deseribe  range rate constraint equation and an elevation
rate.constraint equation. The result i @ noniterative least
squares method that provides a six-degree-of-frecdom motion
estimate as long as the motion between frames of data is
relatively small. This method is much quicker than the one
proposed by Szeliski, but it is not elear that this method
generalizes to arbitrary rotations and translations of a shape.

Kamgar-Parsi et al. [36] also describe a method for the
registration of multiple overlapping range images without
distinctive feature. extraction., This method works very well
using the level sets of 2.5-D range data but is essentially

icted 10 the three degrees of freedom in the planc since the
work was addressed toward piecing together (errain map data.

Li [38] addressed free-form surfice matching with arbitrary
rotations and translations. His method forms an atributed
relational graph of fundamental surface regions for data and
model shapes and then performs graph matching using an
in attributes as

nexact approach that allows for variab
well s in graph adjacency relationships. This seems to be
a reasonable approach but relies on extraction of derivative-
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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piccewise-
(super)quadric models [2], [27], and 3) point sets with known
correspondence. The reader may consult (6] and [14] for pre-
1985 work in these areas. For  sampling of other more recent
related work not discussed below, see (8], [10], 12}, [13],
[19], [20], [24], [26), [34], [35). [37], [39). [44], [46), 48],
(53], 58], [59]

Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonsirated effective matching with a Renault auto part
(steering knuckle) in the early 1980's. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community.
The altemative use of the singular value decomposition (SVD)
algorithm [23], [1], [49] was not as widely known in
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large. planar regions
within a free-form shape.

Schwartz and Sharir [50] developed & solution 0 the fre
form space curye matching problem without feature extraction
in late 1985. They used a nonquaternion approach to comput-
ing the least squares rotation matrix. The method works well
with reasonable quality curve data but has difficulty with very
noisy curves because the method uses arclength sampling OF
the curves to obtain corresponding point sefs.

Haralick et al. [28] addressed the int-set pose es-
timation problem using robust methods eombined with. the
least squares SVD registration approach, which provided a
robust statistical altemative to the,least squares quaternion or

/D point set matching. This algorithm.is able. o handle
statistical outliers and could theoretically be substituted for
our quaternion-based algorithm as long as the determinant of
the orthonormal matrix is strictly a positive one. A recent
conference proceedings [47] contains new contributions on
this subject.

Horn [31) derived an aliernative formulation of Faugeras’s
method [18] of least squares quaternion maching that ses
the maximum eigenvalue of a 4 x 4 mairix instead of the
minimum eigenvalue. Horn (30] and Brow [11] also developed
the extended Gaussian image (EGI) methods, allowing the
matching of convex and restricted sets of noneonvex shapes
based on surface normal histograms.

‘Taubin (5] has done some interesting work in the arca of
implicit algebraic nonplanar 3-D curve and surface estimation
with applications o position estimation without feature ex-
traction. He describes a method of approximating data points
with implicit algebraic forms up 10 the tenth degree using
an approximate distance metric. Global shapes (aot.occluded
shapes) can be identified based on generalized cigenvalues, and
the registration transformation ean be recovered. The method
is shown to be useful for complete planar curve and space
curve shapes, but it is unclear that the effectiveness generalizes

5

well to more complicated surfaces, such as terrain data or @
human face. Taubin has stated that the numerical methods of
the approximate distance fit tend to break down above the tenth
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by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
tesults but remains o be demonstrated for practical use on
complex surfaces.

Sazeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
1o create a method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies  smoothness
assumption to create a smoothing spline approximation of the
point ‘conventional stecpest descent algorithm is used
0 rotate and translate the séeond data set so that it minimizes
the sum of the covariance-weighted > differences between the
points and the surface. His approach is based on a regular
id structure, and true 3-D point-io-surface distances are
not_computed. The Steepest-descent approach is a slower
altemative to reaching the.local minima than our proposed
ICP algorithm described below. Szeliski uses optimal Bayesian
‘mathematics to allow_him to downweight noisicr values at
longer ranges from a simulated range finder. For navigation
range imaging sensors, the uncertainty. in data points vary
sigificantly from the foreground to the background. For high-
‘accuracy sensors with shallow depths of field, the uncertaint
variation between points is orders of magnitude less and is
of much fess concern. Szeliski provides experimental results
for synthetic fermain data and a block. The terrain data motion
test was a simple translation along one axis: & 1-D correlation
problem. His block fest did involve six degrees of freedom
but the block is ‘@ very simple shape. Overall, this work
presents some inféresting ideas, but the experimental results
are unconvincing for applications.

Horn and Harris [33) also addressed the problem of e
ing the exact rigid-body motion of the observer given
sequentially digitized range image frames of the same terrain.
They describe a range rate constraint equation and an elevation
rate constraint equation. The result is & nomiterative least
squares method that provides a six-degree-0f-freedom motion
estimate as 1ong & the motion between frames of data is
relatively small. This method is much quicker than the one
proposed by Szeliski, but it is not clear that this method
generalizes fo arbitrary rotations and translations of a shape.

Kamgar-Parsi ¢ al. [36] also describe @ method for the
registration of multiple overlapping range images without
distinctive feature-extraction. This method works very well
using the level sels of 2.5-D range data but is cssentially
restricted to the three degrees of freedom in the plane since the
work was addressed toward piecing together tefrain map data

Li [38] addressed free-form surface matching with arbitrary
sotations. and. isanslations. His method forms an atributed
relational graph of fundamental surface regions for data and
model shapes and then performs graph matching using an
inexact approach that allows for variability in attributes as
well as in graph adjacency relationships. This seems to be
a reasonable approach but relies on extraction of derivative-
based quantities. Experimental results are shown for a coffee

cup and the Renault auto part; see also Wong et al. [60] for
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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models [2], [27], and 3) point sets with known
correspondence. The reader may consult [6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see (8], [10], [12], [13],
(191, [20], [24], [26], [34], [35]. [37], [39], [44], [46], [48],
[53], [58], [59]

Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonstrated effective matching with a Renault auto part
(steering knuckle) in the early 1980’s. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community.
The alternative use of the singular value decomposition (SVD)
algorithm [23], [1], [49] was not as widely known in this time
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large planar regions
within a free-form shape.

Schwartz and Sharir [50] developed a solution to the free-
form space curve matching problem without feature extraction
in late 1985. They used a nonquaternion approach to comput-
ing the least squares rotation matrix. The method works well
with reasonable quality curve data but has difficulty with very
noisy curves because the method uses arclength sampling of
the curves to obtain corresponding point sets.

Haralick et al. [28] addressed the 3-D point-set pose es-
timation problem using robust methods combined with the
least squares SVD registration approach, which provided a
robust statistical alternative to the least squares quaternion or
SVD point set matching. This algorithm is able to handle
statistical outliers and could theoretically be substituted for
our quaternion-based algorithm as long as the determinant of
the orthonormal matrix is strictly a positive one. A recent
conference proceedings [47] contains new contributions on
this subject.

Horn [31] derived an alternative formulation of Faugeras’s
method [18] of least squares quaternion matching that uses
the maximum eigenvalue of a 4 x 4 matrix instead of the
minimum eigenvalue. Horn (30] and Brou [11] also developed
the extended Gaussian image (EGI) methods allowing the
matching of convex and restricted sets of nonconvex shapes
based on surface normal histograms.

Taubin [55] has done some interesting work in the area of
implicit algebraic nonplanar 3-D curve and surface estimation
with applications to position estimation without feature ex-
traction. He describes a method of approximating data points
with implicit algebraic forms up to the tenth degree using
an approximate distance metric. Global shapes (not occluded
shapes) can be identified based on generalized eigenvalues, and
the registration transformation can be recovered. The method
is shown to be useful for complete planar curve and space
curve shapes, but it is unclear that the effectiveness generalizes
well to more complicated surfaces, such as terrain data or a
human face. Taubin has stated that the numerical methods of
the approximate distance fit tend to break down above the tenth
degree. He later [56] extended his work in shape description

by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
results but remains to be demonstrated for practical use on
complex surfaces.

Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
to create a method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies a smoothness
assumption to create a smoothing spline approximation of the
points. Then, a conventional steepest descent algorithm is used
to rotate and translate the second data set so that it minimizes
the sum of the covariance-weighted z differences between the
points and the surface. His approach is based on a regular
zy-grid structure, and true 3-D point-to-surface distances are
not computed. The steepest-descent approach is a slower
alternative to reaching the local minima than our proposed
ICP algorithm described below. Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
longer ranges from a simulated range finder. For navigation
range imaging sensors, the uncertainty in data points vary
significantly from the foreground to the background. For high-
accuracy sensors with shallow depths of field, the uncertainty
variation between points is orders of magnitude less and is
of much less concern. Szeliski provides experimental results
for synthetic terrain data and a block. The terrain data motion
test was a simple translation along one axis: a 1-D correlation
problem. His block test did involve six degrees of freedom,
but the block is a very simple shape. Overall, this work
presents some interesting ideas, but the experimental results
are unconvincing for applications.

Horn and Harris [33] also addressed the problem of es-
timating the exact rigid-body motion of the observer given
sequentially digitized range image frames of the same terrain.
They describe a range rate constraint equation and an elevation
rate constraint equation. The result is a noniterative least
squares method that provides a six-degree-of-freedom motion
estimate as long as the motion between frames of data is
relatively small. This method is much quicker than the one
proposed by Szeliski, but it is not clear that this method
generalizes to arbitrary rotations and translations of a shape.

Kamgar-Parsi er al. [36] also describe a method for the
registration of multiple overlapping range images without
distinctive feature extraction. This method works very well
using the level sets of 2.5-D range data but is essentially
restricted to the three degrees of freedom in the plane since the
work was addressed toward piecing together terrain map data.

Li [38] addressed free-form surface matching with arbitrary
rotations and translations. His method forms an attributed
relational graph of fundamental surface regions for data and
model shapes and then performs graph matching using an
inexact approach that allows for variability in attributes as
well as in graph adjacency relationships. This seems to be
a reasonable approach but relies on extraction of derivative-
based quantities. Experimental results are shown for a coffee
cup and the Renault auto part; see also Wong et al. [60] for
other related work using attributed graphs for 3-D matching.
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