

ParkRL: Learning Generalizable Parking via DRL

Raine Cui • Georgia Lin • James Liu • Tianyao Ren

CMPT 729 Reinforcement Learning

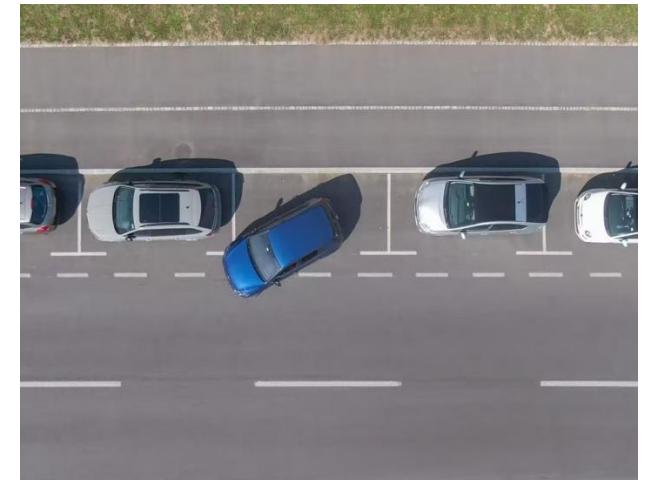
December 1, 2025

Introduction

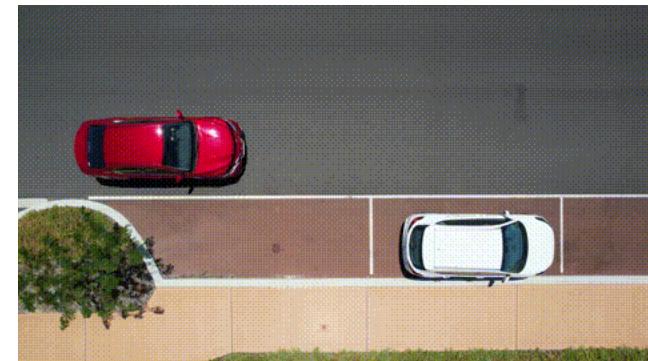
Perpendicular Parking (90°)

Angled Parking (45°)

Parallel Parking (0°)

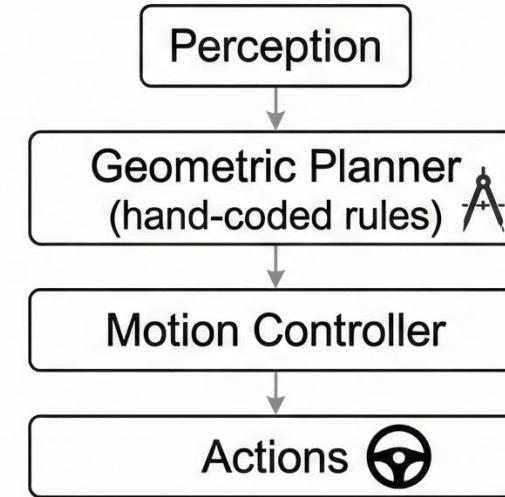
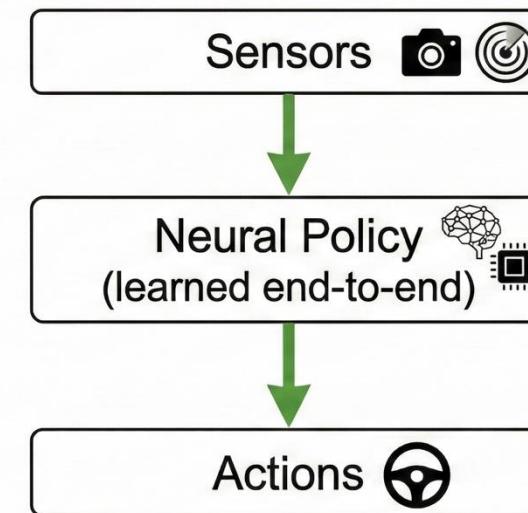


- Challenges
 - **Non-holonomic:** Can't slide sideways
 - **Continuous control:** Throttle + steering
 - **Dense obstacles:** Cars, walls, barriers



Related Work

- **Traditional Methods**
 - ✗ Scenario-specific tuning
 - ✗ Slow replanning
 - ✗ **Poor generalization** to new layouts
- RL Approach
 - ✓ One policy for ALL scenarios
 - ✓ Fast $O(1)$ inference time
 - ✓ Generalization via randomized training

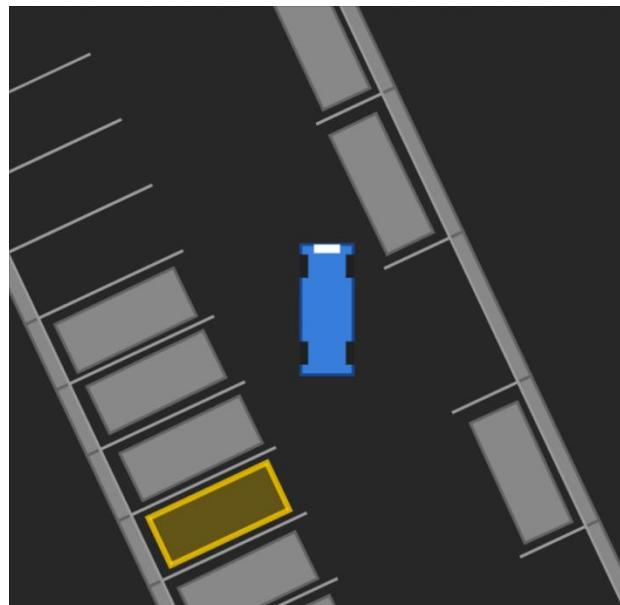


Method Overview

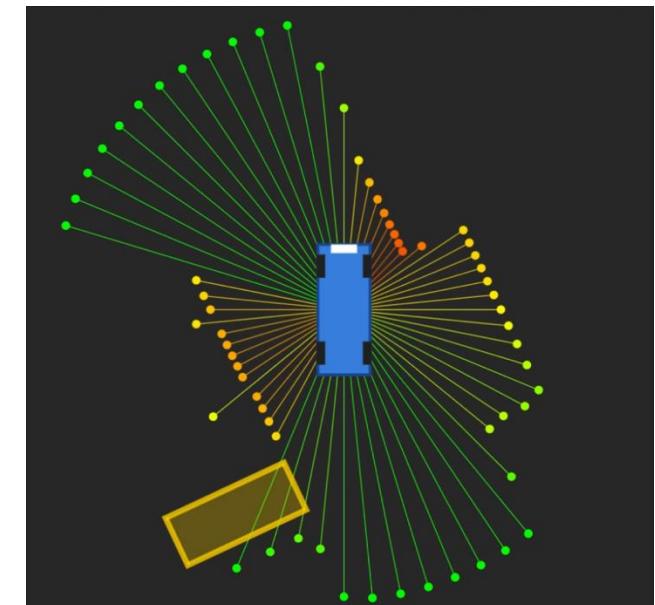
- Random Parking Lot → Observations → Neural Policy → Actions

- **Observations**

- 64-ray LiDAR
- Self speed & steering
- Target pose
 - Ego-centric coordinates
 - Generalization



Parking Lot Scene

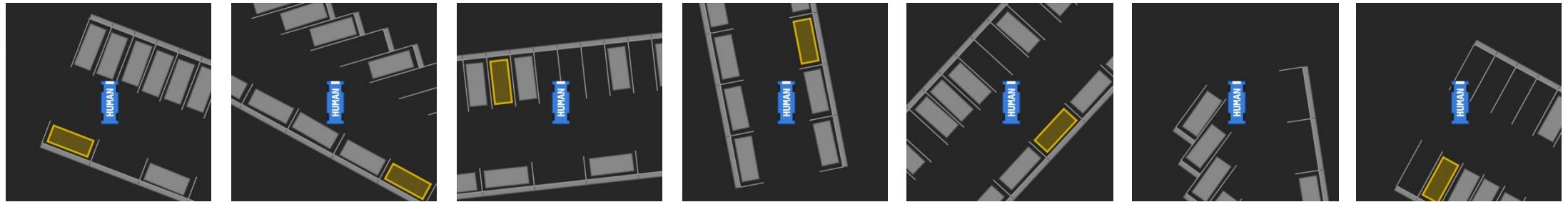


Observations

- **Actions**

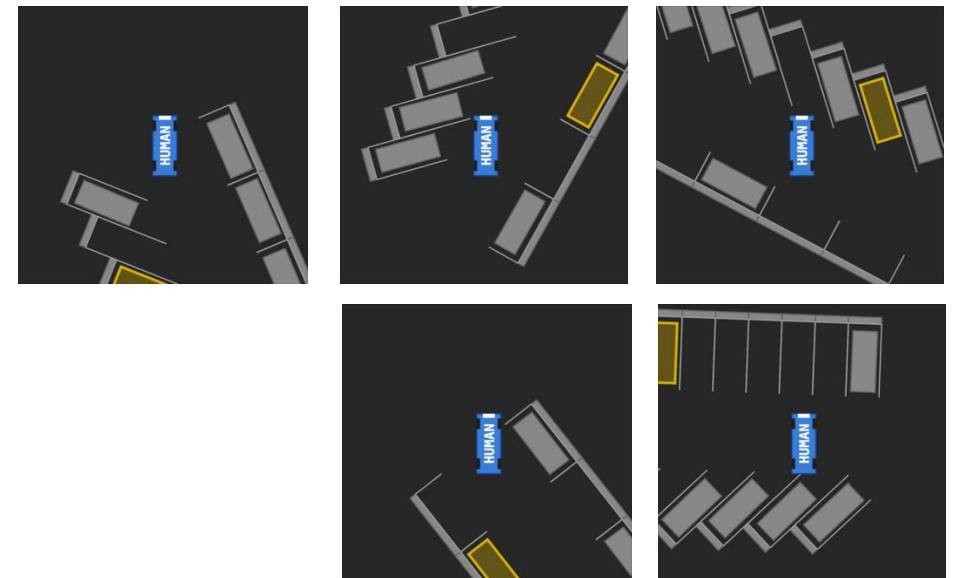
- Target speed
- Target steering

Randomized Training Environments



- **Procedural Generation**

- Random parking types ($90^\circ/45^\circ/0^\circ$)
- Probabilistic obstacles (50% density)
- Random barriers (walls/curbs)
- Variable road width (6-10m)

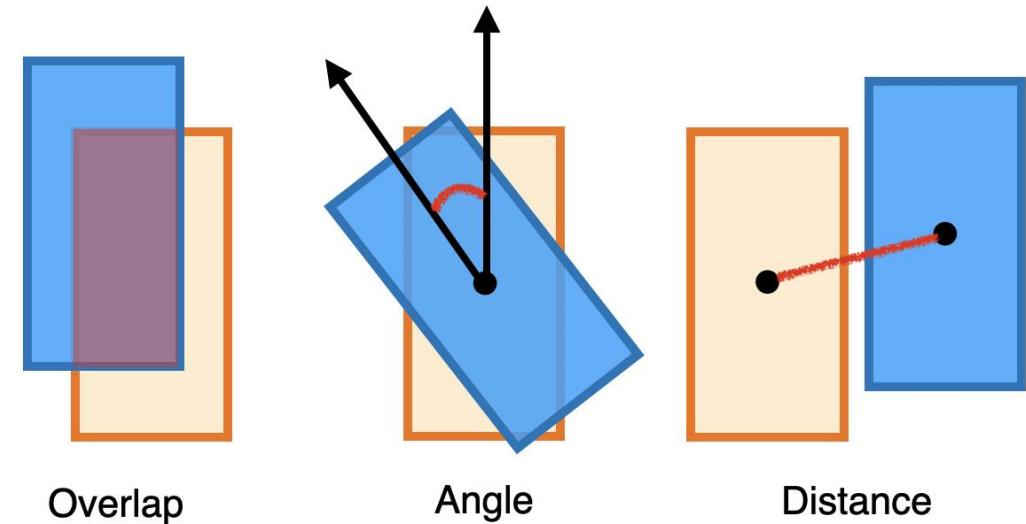


- **Every episode = different parking lot**

- Policy must generalize, can't memorize scene!

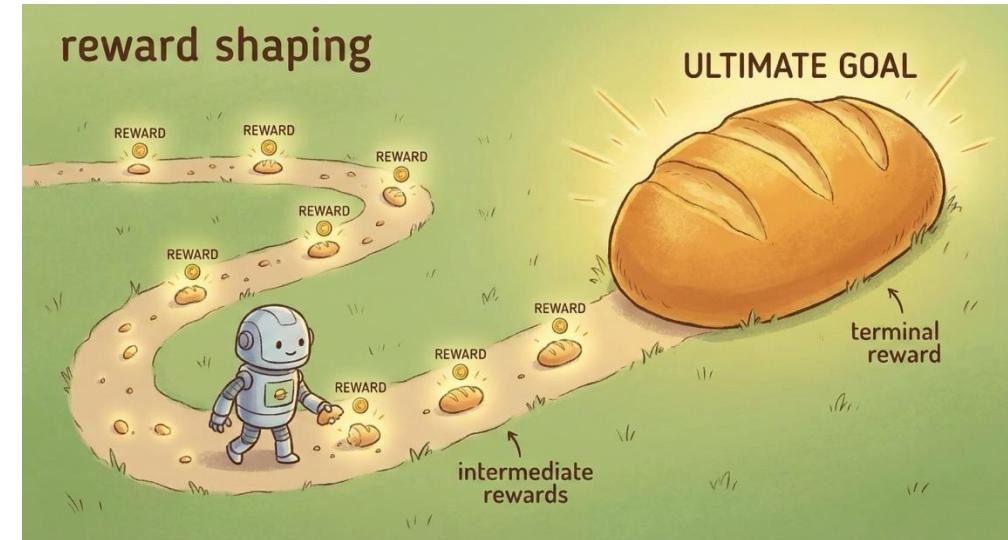
Reward Design

- **Successful Parking**
 - Up to +100 pts
 - Harmonic mean of (Overlap, Distance, Angle)



- **Collision Penalty**
 - $-(1 + v^2)$ pts

- **Reward Shaping**
 - **Distance:** +1 pt per meter closer
 - **Time:** -0.5 pts per second
 - **Gear-Shifting:** -1 pt each time

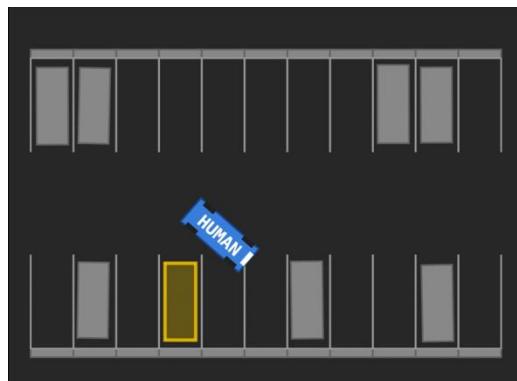


breadcrumbs leading to final bread

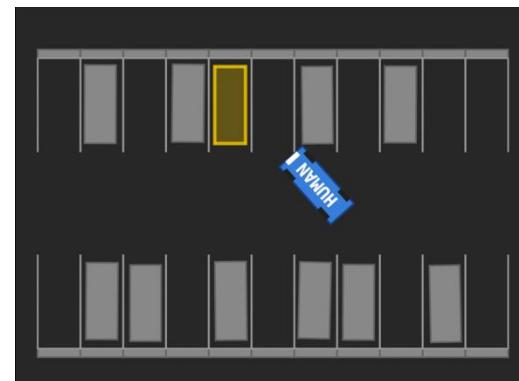
Curriculum Learning Strategy

- Three-Stages

1. **Learn basics (2h)** (low speed, few obstacles)
2. **Increase speed (40min)** (increased speed 1 m/s → 3 m/s → 5 m/s)
3. **More obstacles (3h)** (density 20% → 40% → 80%)



obstacle density 20%

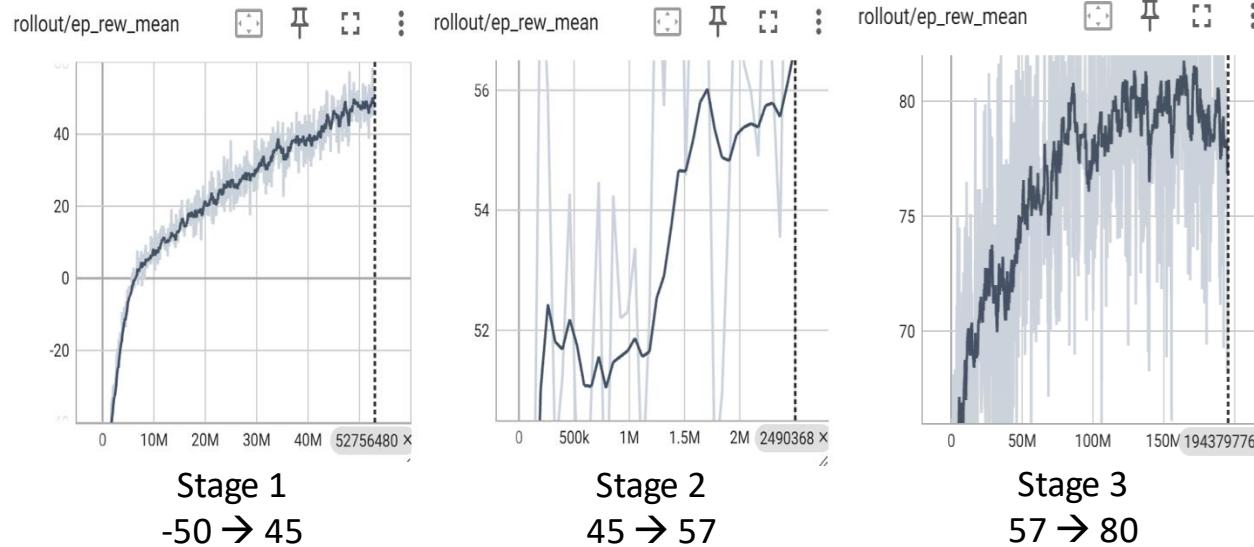
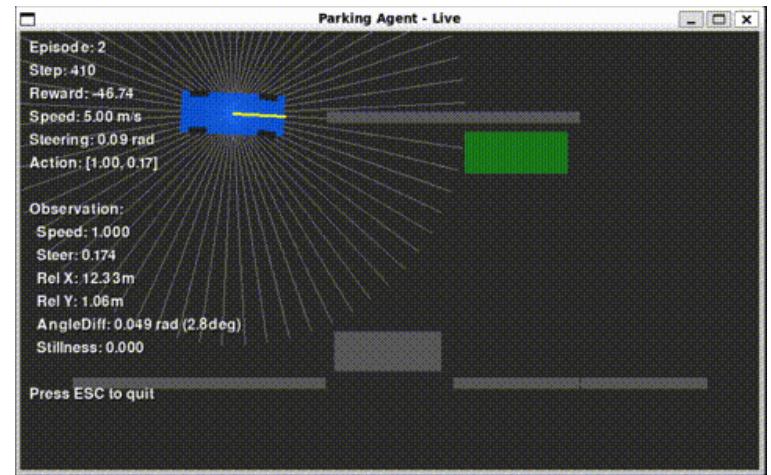


obstacle density 40%

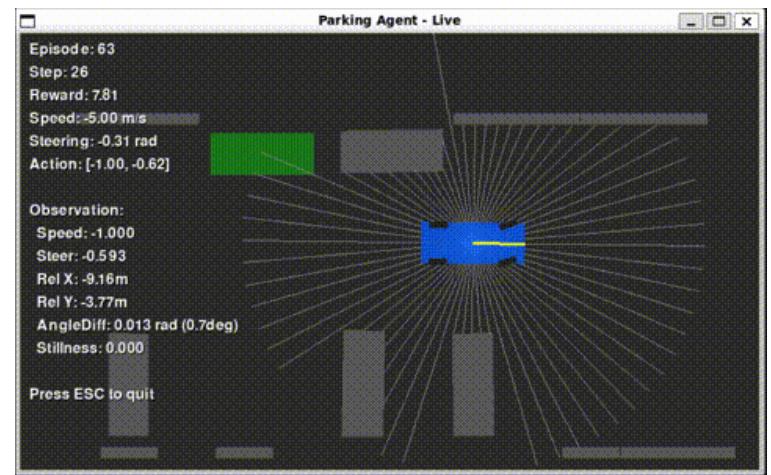
obstacle density 80%

- **Necessity:** Will be demonstrated in ablations

Training Results



Early-stage model struggles to park



Converged model parks quickly

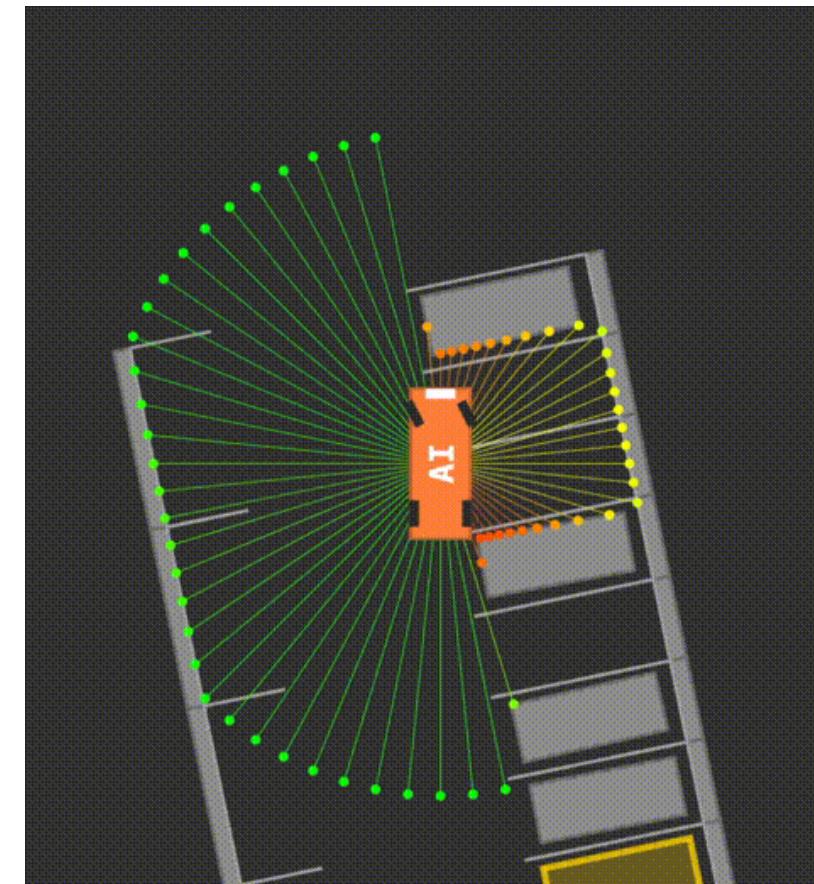
- Converged Performance
 - Avg. Reward: ≈ 80 pts
 - Success rate: ≈ 96 %
 - Parking speed: ≈ 3.7 m/s
 - Collision every 7 episodes

Interactive Demo

- <https://bit.ly/729demo> (or <https://pkucuipy.github.io/rl-final>)

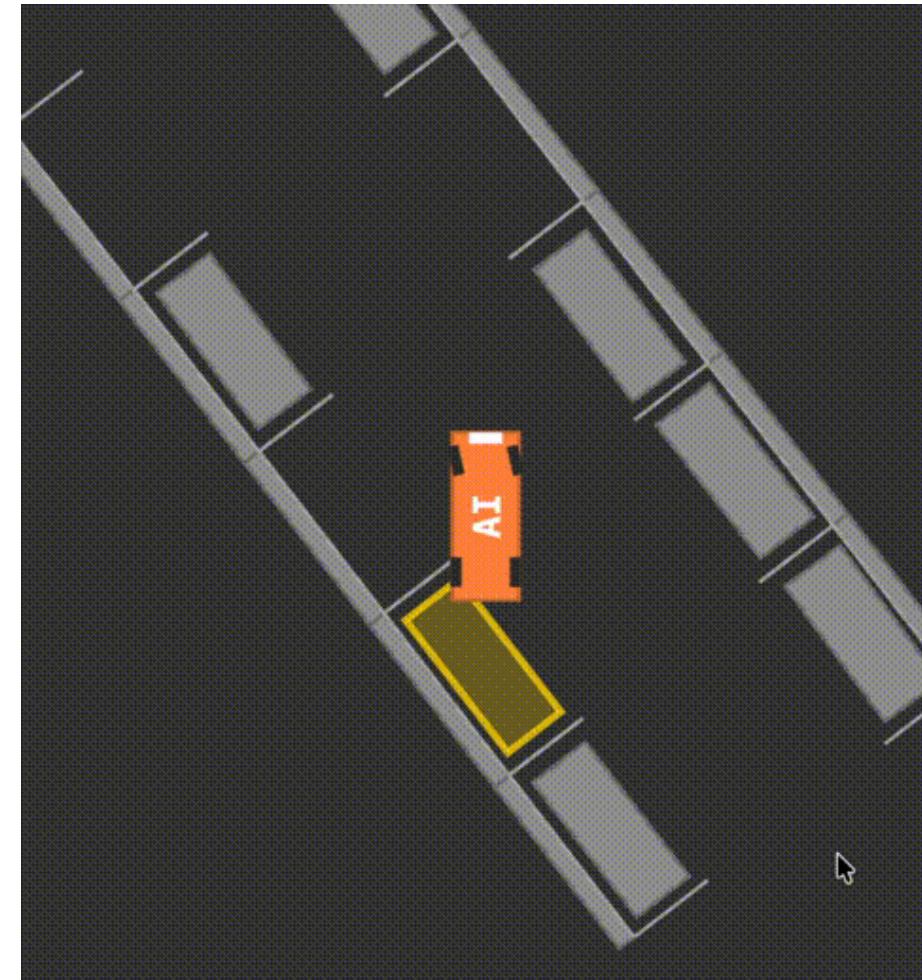
- **Interactive Features**

- **J/K/L** – Switch LiDAR Render Modes
- **T/Y** – Switch first-person camera
- **M/N** – Disable/Enable AI



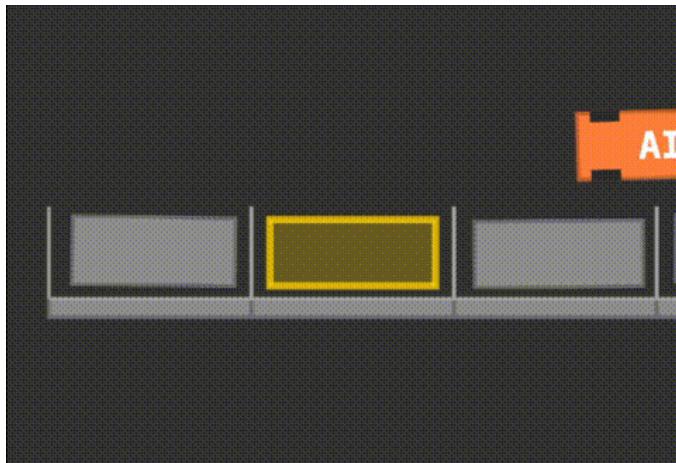
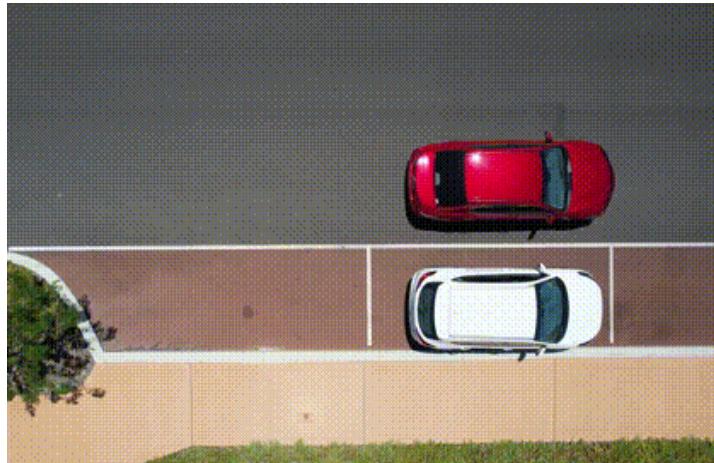
Interactive Demo

- <https://bit.ly/729demo> (or <https://pkucuipy.github.io/rl-final>)
- **Interactive Features**
 - **J/K/L** – Switch LiDAR Render Modes
 - **T/Y** – Switch first-person camera
 - **M/N** – Disable/Enable AI
- **AI-Copilot Mode!**



Emergent Behaviors

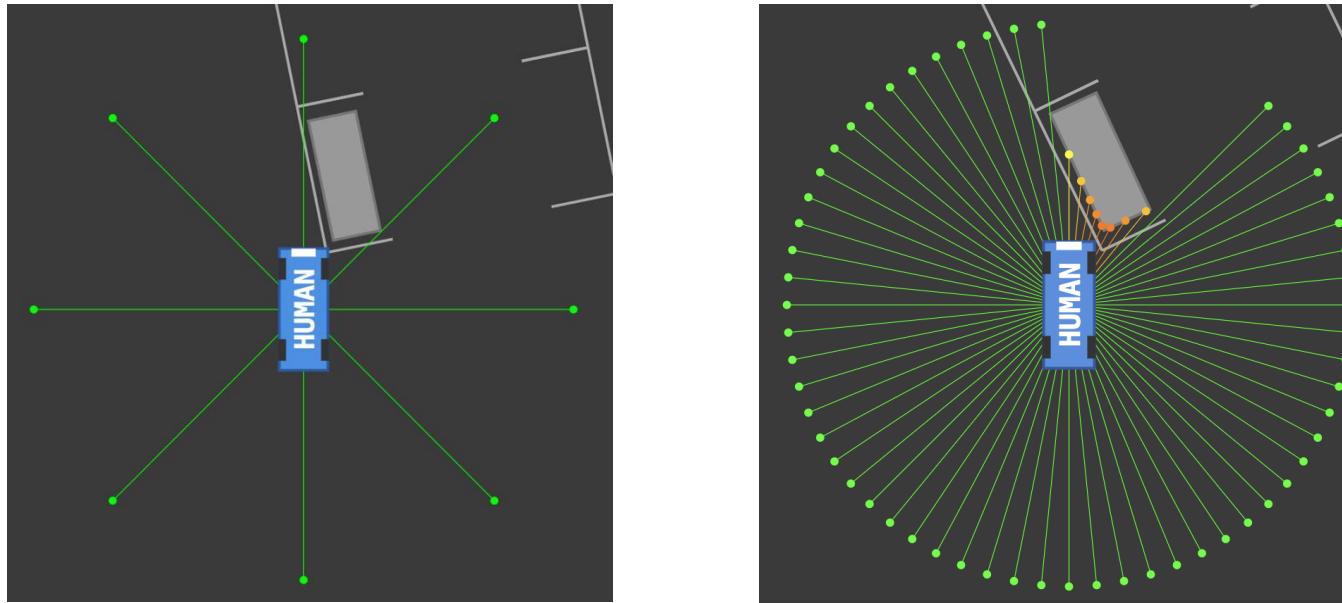
- What Did the Agent Learn?



- Discovered Strategies
 - ✓ Reverse bay parking
 - ✓ Reverse parallel parking
 - ✓ Matches human driving school techniques!

Ablation 1 – LiDAR Resolution

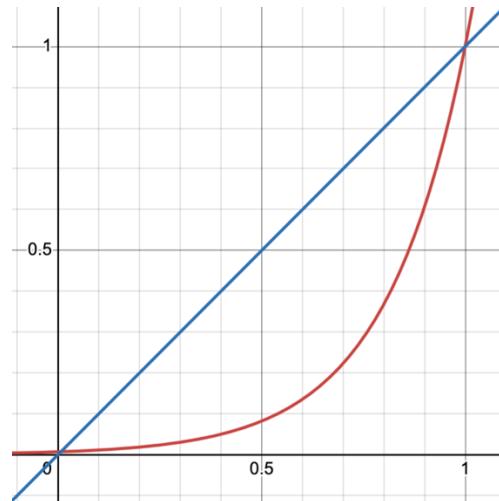
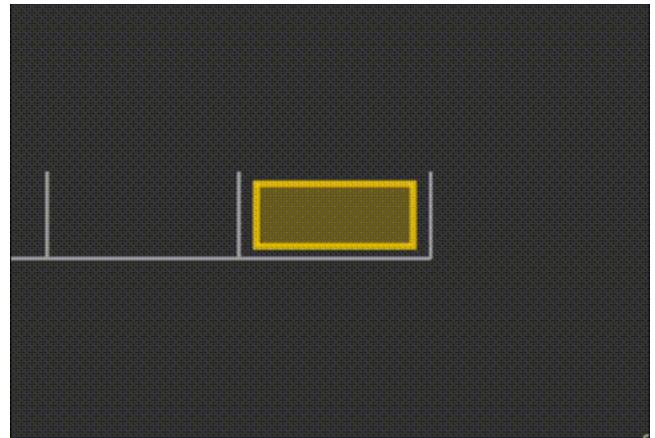
- Why 64 rays? Can we use Fewer?
- 8 Rays Failure Case: Blind spots!



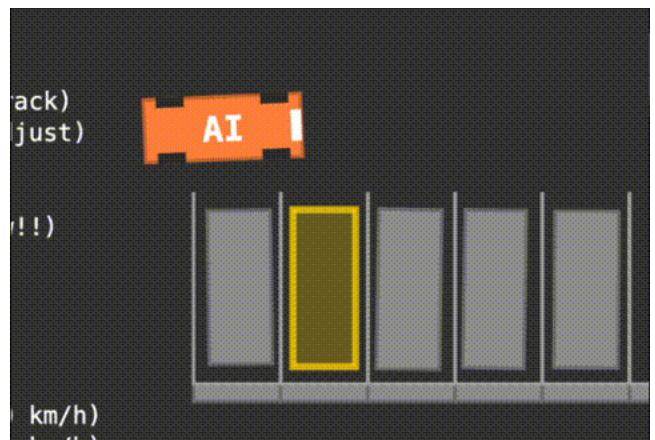
- Problem: Without memory, blind spots cause:
 - Unexpected collisions
 - Unstable, jumpy control policies

Ablation 2 – Reward Exponential Decay

- No Decay **vs** Exponential Decay
 - No decay: “Good enough” at 45° → mediocre parking
 - $\text{Exp}(-5x)$: Precision required → perfect alignment



mediocre parking

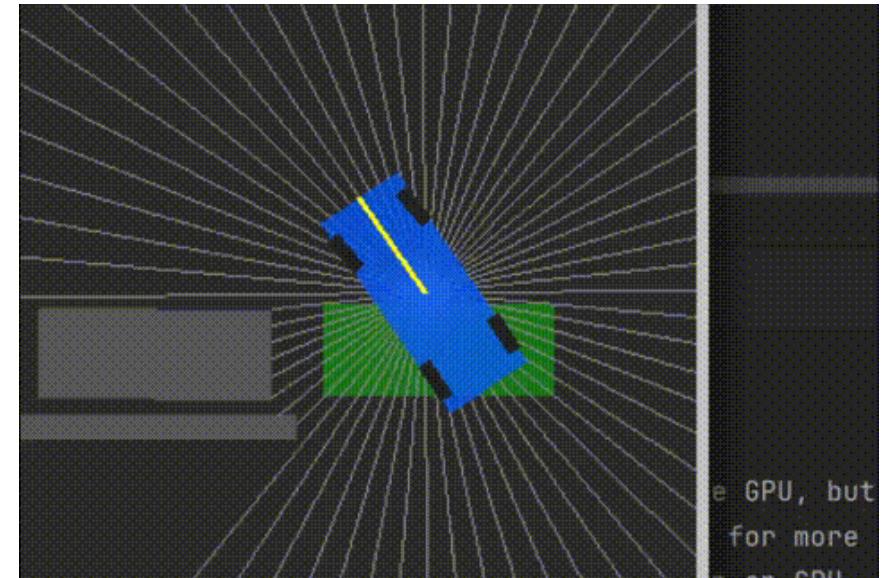


reversing maneuvers

- Harder rewards → better strategies
 - Agent discovers reversing maneuvers!
 - Counter-intuitive: Higher converged reward $\approx 50 \rightarrow \approx 80$!

Ablation 3 – Is Curriculum Learning Necessary?

- From-scratch: doesn't converge
 - Never learns to stop
 - Only learns obstacle avoidance
- With Curriculum: converges in 6 hours
 - Successfully learns all behaviors
- Conclusion: Curriculum essential for multi-objective tasks



Never learns to stop

Limitations & Future Work

- **Soft Collision Constraints**
 - Current: Penalty-based (no hard guarantee)
 - **Idea:** Beam search over sampled rollouts
- **No Temporal Memory**
 - Current: Stateless policy (may re-explore)
 - **Solution:** Recurrent architecture (LSTM/Transformer)
- **Limited Model Capacity**
 - Current: Small 2-layer MLP
 - **Direction:** Scale up, use pre-trained vision features

Summary

- ✓ End-to-end RL for generalized parking
- ✓ Novel reward design
- ✓ Systematic curriculum strategy
- ✓ Emergent human-like behaviors
- ✓ Deployment-ready (Python → ONNX → WebJS)

Presented by: Raine Cui • Georgia Lin • James Liu • Tianyao Ren

Thank You!