
ParkRL: Learning Generalizable Parking Policies via
Deep Reinforcement Learning

Raine Cui, Georgia Lin, James Liu, Tianyao Ren
December 5th, 2025

Abstract

Autonomous parking is a critical component of self-driving systems, requiring pre-
cise control and robust generalization across diverse scenarios. We present ParkRL,
a deep reinforcement learning approach that learns a single end-to-end policy
capable of handling perpendicular, angled, and parallel parking in randomized en-
vironments with dense obstacles. Our key contributions include: (1) a novel reward
design using harmonic mean and exponential decay that prevents local minima
and encourages precise alignment, (2) a systematic three-stage curriculum learning
strategy essential for convergence, and (3) comprehensive ablation studies demon-
strating the impact of sensor resolution, reward shaping, and training curriculum.
The learned policy exhibits emergent human-like behaviors such as reverse park-
ing. We deploy the trained model to an interactive web demonstration, providing
real-time inference. Demo: https://pkucuipy.github.io/rl-final

1 Introduction

Autonomous parking represents a fundamental challenge in self-driving systems, requiring vehicles
to navigate from arbitrary starting positions to precise target poses within confined environments.

The task is technically challenging for several reasons. First, vehicles are subject to non-holonomic
constraints—unlike omnidirectional robots, cars cannot slide sideways and must perform complex
multi-point maneuvers to adjust lateral position. Second, the task requires continuous control over
both throttle and steering, operating in a high-dimensional action space. Third, parking scenarios
involve dense obstacle environments with walls, other vehicles, and barriers that require precise
spatial awareness to avoid collisions. Finally, the task exhibits sparse rewards: naive formulations
provide no feedback until the vehicle is perfectly parked, making exploration extremely difficult.

Furthermore, real-world parking systems must generalize across diverse scenarios. Parking lots
exhibit three common configurations: perpendicular (90°), angled (45°), and parallel (0°) parking,
each requiring fundamentally different maneuvering strategies. Traditional approaches often require
separate hand-tuned controllers for each type, limiting their practical deployment.

Our approach. We formulate autonomous parking as a continuous control reinforcement learning
problem and train a single neural policy that generalizes across all parking types through environment
randomization. Our key contributions are:

• Novel reward design: We introduce a reward function using harmonic mean to enforce
simultaneous satisfaction of multiple objectives, and exponential decay curves that prevent
"good enough" local minima.

• Systematic curriculum learning: We demonstrate that a carefully designed three-stage cur-
riculum (low speed→ progressive speed increase→ obstacle density increase) is essential
for convergence. Training from scratch fails to learn even basic behaviors.

https://pkucuipy.github.io/rl-final

• Comprehensive ablations: We conduct systematic studies on sensor resolution (8 vs 64
LiDAR rays), reward curve design (linear vs exponential decay), and training strategies
(curriculum vs from-scratch), providing insights into crucial design decisions.

• Emergent behaviors: The learned policy independently discovers human-like strategies
such as reverse bay parking and reverse parallel parking, matching techniques taught in
driving schools without any explicit programming.

• Complete deployment pipeline: We implement a full training-to-deployment system
(Python training→ ONNX→ JavaScript inference) with an interactive web demonstration.

2 Related Work

Traditional methods. Autonomous parking has traditionally been addressed through decoupled
planning and control approaches. These methods separate the problem into two stages: first
computing a geometric path using motion primitives, optimization-based planners, or analytical
solutions, then tracking this path with a low-level controller such as Model Predictive Control
(MPC) [2]. While these approaches can provide theoretical guarantees in structured scenarios, they
face several limitations. First, they typically require hand-tuned rules specific to each parking
type—perpendicular, angled, and parallel parking each need different planning strategies. Second,
the rigid separation between planning and control limits adaptability; replanning is computationally
expensive and struggles with real-time constraints. Third, these methods often lack robustness to
variations in parking lot layouts, requiring extensive manual tuning for different configurations.

Reinforcement learning approaches. Reinforcement learning offers an alternative through end-
to-end learning, where a single neural policy maps sensor observations directly to control actions.
Existing RL environments for parking, such as parking-v0 in the Highway-Env suite [3], provide
standardized benchmarks but exhibit key limitations. These environments typically use simple kine-
matic observations (vehicle position, velocity, heading) without rich spatial sensing, operate in fixed
scenarios with predetermined obstacle configurations, and lack systematic studies of generalization
to unseen layouts. Policies trained in these settings may overfit to specific parking lot configurations.

Our focus. This work addresses the generalization challenge through systematic environment
randomization during training. Every episode presents a completely different parking lot with
random layouts, obstacle placements, and target positions, forcing the policy to learn generalizable
strategies rather than memorizing specific scenarios. We investigate key design decisions through
ablation studies: How does sensor resolution (Section 4.3) impact policy robustness? How does
reward curve design (Section 4.4) affect convergence and final performance? Is curriculum learning
(Section 4.5) necessary for multi-objective tasks? These systematic investigations provide insights
into crucial architectural and algorithmic choices for learning robust parking policies.

3 Method

3.1 Problem Formulation

We formulate autonomous parking as a continuous control Markov Decision Process (MDP) defined
by the tuple (S,A, T ,R, γ).
State space S consists of a 71-dimensional observation vector encoding:

• LiDAR sensor (64 dimensions): We deploy 64 rays uniformly distributed over 360° around
the vehicle, each with a maximum range of 10 meters. Each ray returns the normalized
distance to the nearest obstacle: ri ∈ [0, 1] where 0 indicates maximum range (no obstacle
detected) and 1 indicates immediate proximity.

• Ego-motion (2 dimensions): Current vehicle speed v ∈ [−5, 5] m/s (normalized) and
steering angle θ ∈ [−π/4, π/4] radians (normalized).

• Target pose (4 dimensions): The target parking spot’s position and orientation relative to
the vehicle in the ego-centric coordinate frame:

– Relative position: forward distance dx and lateral distance dy
– Relative heading: (cos∆θ, sin∆θ) to ensure continuity at angle wraparound

2

• Stopping progress (1D): Normalized count of consecutive frames with speed < 0.1 m/s.

All observations are in the vehicle’s ego-centric coordinate frame, meaning the state representation
is invariant to global translation and rotation. This design choice dramatically improves generaliza-
tion—the policy doesn’t need to learn separate strategies for different absolute positions.

Figure 1: Observations of an Example Scene

Action space A consists of 2-dimensional continuous control normalized to [−1, 1]2:

a = [target_speed_norm, target_steering_norm] ∈ [−1, 1]2 (1)

These normalized actions are scaled to physical ranges: target speed to [−5, 5] m/s and target steering
to [−π/4, π/4] radians.

Importantly, actions represent targets rather than instantaneous commands. The vehicle’s actual
speed and steering angle transition smoothly toward these targets with rate limits:

v̇ ≤ 5 m/s2 (max acceleration) (2)

θ̇ ≤ π/4 rad/s (max steering rate) (3)

This rate-limited design prevents unrealistic high-frequency oscillations (e.g., rapid switching between
full left and full right steering) and better reflects real vehicle dynamics.

Dynamics T uses a kinematic bicycle model with the rear axle as the reference point:

ẋ = v cos(ψ), ẏ = v sin(ψ), ψ̇ =
v tan(θ)

L

where (x, y) is the rear axle position, ψ is the vehicle heading, θ is the steering angle, and L = 3 m
is the wheelbase. The vehicle has length 4.5 m and width 1.8 m.

Collision detection uses the Separating Axis Theorem to check for intersections between the vehicle’s
oriented bounding box and all obstacles. Upon collision, the vehicle’s velocity is reversed and halved:
v ← −0.5v. Episodes do not terminate on collision to allow the policy to learn recovery behaviors.

Reward functionR is detailed in Section 3.3.

3.2 Environment Design: Randomized Parking Lots

To enforce generalization, we train exclusively on procedurally generated parking lots. Each episode
samples a completely new environment with the following randomization:

Parking lot layout: The environment consists of a central road (width randomly sampled from 6-10
meters) with parking areas on both sides. Each side contains a variable number of parking spots of
one of three types: perpendicular (90°): standard bay parking; angled (45°): diagonal parking; and
parallel (0°): street parking. The type is randomly sampled per episode with configurable weights
(we use 1:1:3 to oversample parallel parking which is inherently more difficult).

Obstacle placement: Each parking spot has a probability pobs ∈ [0, 1] of containing an obstacle
vehicle. Additionally, barriers are randomly placed adjacent to spots with probability 0.5.

Target selection: One empty spot is randomly designated as the target. The vehicle is initialized on
the central road with random position, heading ψ0 ∈ [−π/2, π/2], and initial speed v0 ∈ [−1, 1] m/s.

3

Figure 2: Examples of three parking lot types with different configurations

3.3 Reward Design

The reward function combines a sparse success reward with dense shaping rewards to guide learning.

Success reward (up to +100 points) is granted when the vehicle remains stationary (speed < 0.1
m/s) for a threshold duration (0.2-1.0 seconds depending on curriculum stage; e.g., 0.2s = 2 frames at
10 FPS). The reward evaluates parking quality using three metrics:

1. Overlap ratio roverlap: Fraction of vehicle area overlapping the target spot, computed via
Monte Carlo sampling (1000 random points within vehicle bounds).

2. Distance score rdist: Exponential decay based on center-to-center distance d:

rdist = exp(−3 · d/dmax) (4)

where dmax is the diagonal of the parking spot.

3. Angle score rangle: Exponential decay based on heading error ∆θ, considering both forward
and reverse orientations (since either direction is acceptable):

rangle = exp(−5 ·min(|∆θ|, |∆θ − π|)/π) (5)

The final success reward uses the harmonic mean of these three scores:

Rsuccess = 100 · 3
1

roverlap
+ 1

rdist
+ 1

rangle

(6)

We use harmonic mean rather than arithmetic mean because it exhibits a "short-board effect"—all
three metrics must be high to achieve a high overall score. For example, perfectly centered with zero
distance but perpendicular to the spot yields near-zero reward, correctly penalizing poor parking.

The choice of exponential decay with decay rates 3 and 5 is crucial and validated in Section 4.4. These
steep curves prevent "good enough" local minima where the agent settles for mediocre alignment.

Intermediate rewards provide "breadcrumbs" for exploration:

• Distance shaping ±1 point per meter: Reward for increasing/decreasing distance to target.

• Time penalty −0.5 points per second: Encourages efficient parking.

• Collision penalty −(1 + 3v2) points: Discourages crashes, with quadratic dependence on
velocity to heavily penalize high-speed collisions.

• Gear-shift penalty −1 point: Triggered when velocity changes sign (forward↔ backward),
discouraging rapid oscillations that simulate unrealistic gear shifting.

3.4 Training Algorithm and Architecture

We employ Proximal Policy Optimization (PPO) [5] with the following hyperparameters:

Training is performed using Stable-Baselines3 [4]. We use a standard MLP policy, where a shared
feature extractor feeds into separate policy head (outputs action mean µθ(s) and learnable log-std)
and value head. The policy is a squashed Gaussian: a ∼ tanh(N (µθ(s), σ

2
θ)).

We experimented with 1D-CNN architectures to process the 64-ray LiDAR as a circular image (using
circular padding), but found MLP sufficient for this task and more stable during training.

4

Hyperparameter Value

Learning rate 3× 10−4

Rollout buffer size 4096 steps
Mini-batch size 1024 samples
Training epochs per update 10
Discount factor γ 0.99
GAE parameter λ 0.95
Clip range 0.2
Target KL divergence 0.05 (early stopping)
Entropy coefficient 0.01
Policy std initialization log σ0 = −1.0 (σ0 ≈ 0.37)
Policy std clamping [exp(−5), exp(−1)] ≈ [0.0067, 0.37]

Table 1: PPO hyperparameters used for training.

3.5 Curriculum Learning Strategy

A critical finding (validated in Section 4.5) is that training from scratch with the final task configuration
fails to converge. We instead employ a carefully designed three-stage curriculum [1]:

Stage 1: Learn basic parking (2 hours)

• Maximum speed: 1 m/s, Obstacle density: 20%

• Stopping threshold: 0.2 seconds (2 frames at 10 FPS)

• Goal: Learn to approach target spot and stop.

Stage 2: Progressive speed adaptation (40 minutes, 4 rounds)

• Speed sequence: 1.0→ 1.5→ 2.25→ 3.375→ 5.0 m/s

• Each fine-tuning round: ∼10 minutes

• Goal: Gradually decrease relative vehicle responsiveness.

Stage 3: Increase obstacle robustness (3 hours)

• Obstacle density: 0.2→ 0.4→ 0.8

• Stopping threshold: 0.2→ 0.3→ 1.0 seconds

• Goal: Learn collision avoidance and precise maneuvering in cluttered spaces.

3.6 Deployment Pipeline

We implement a complete training-to-deployment system:

1. Training: Python environment using Gymnasium API with PPO (Stable-Baselines3 library).

2. Export: Trained policy exported to ONNX format using deterministic action selection.

3. Web deployment: Interactive JavaScript implementation with in-browser inference.

The Python and JavaScript environments share identical physics configurations. The web demo
provides an interactive experience where users can toggle AI control and visualize sensor observations.

4 Experimental Results

4.1 Training Convergence

Figure 3 shows the training progression across all three curriculum stages. Starting from an average
reward of -50 (random exploration with collisions and timeouts), the policy steadily improves:

Final performance metrics (evaluated with converged policy):

5

Figure 3: Training curves showing reward progression across three curriculum stages.

• Average reward: 79.8

• Success rate: 96.2%

• Average parking speed: 3.1 m/s (distance / time for successful episodes)

• Collision rate: 0.146 times per episode

4.2 Emergent Behaviors

A remarkable finding is that the learned policy independently discovers parking strategies matching
human driving school techniques, despite no explicit programming or demonstration. We observe:

• Reverse bay parking: For perpendicular (90°) and angled (45°) spots, the policy preferen-
tially backs into the spot rather than driving forward.

• Reverse parallel parking: For parallel (0°) spots, the policy approaches from the front,
backs past the target spot, then reverses in with precise angle control. This mirrors the
"reverse parallel parking" maneuver taught to human drivers.

These behaviors emerge purely from reward optimization—the reward function does not specify how
to park, only the desired final state (proper alignment with target spot). The fact that RL discovers
the same strategies as human experts suggests these may indeed be optimal solutions to the parking
problem under the given vehicle dynamics and constraints.

Interestingly, the reward function is direction-agnostic (allows both forward and reverse parking via
min(|∆θ|, |∆θ − π|) in angle scoring), yet the policy learns a strong preference for reversing. This
likely arises from the non-holonomic constraints: backing into a spot allows finer lateral adjustment
using the front wheels’ larger turning radius.

4.3 Ablation Study 1: LiDAR Resolution

Research question: Is dense LiDAR coverage (64 rays) necessary, or can the policy operate with
sparser sensors (8 rays)?

Setup: We train two policies with identical configurations except for LiDAR resolution.

Finding: The 8-ray policy exhibits severe failure modes due to blind spots, leading to:

1. Unexpected collisions: The policy approaches obstacles that are invisible in its current
observation, then collides when the obstacle enters sensor view.

2. Jumpy, unstable control: When an obstacle suddenly appears between time steps t and
t + 1 (moving from a blind spot into sensor range), the policy’s actions change abruptly,
causing oscillatory behavior.

This problem is exacerbated by our stateless policy design—the policy has no memory of previously
observed obstacles. If an obstacle moves into a blind spot, the policy "forgets" its existence. With
dense 64-ray coverage, blind spots are minimized, and obstacles remain consistently visible.

Conclusion: Dense sensor coverage is crucial for stateless policies. The 64-ray configuration provides
sufficient spatial awareness to enable stable, collision-aware control.

6

Figure 4: Illustration of blind spot problem with 8 rays vs 64 rays

4.4 Ablation Study 2: Reward Curve Design

Research question: How does the choice of reward decay function (linear vs exponential) affect
learning and final performance?

Setup: We compare two reward configurations for the distance and angle scores:

• Linear decay: r = max(0, 1− k · error)

• Exponential decay (ours): r = exp(−k · error) with k = 3 for distance, k = 5 for angle

Counterintuitive finding: Making the reward harder to achieve leads to better final performance.

With linear decay, the policy converges to an average reward of ∼50 points. Inspection reveals a
"good enough" parking strategy: the vehicle enters the spot with moderate alignment (e.g., 30-45°
angle error, 0.3-0.5 m lateral offset), achieving 50-60% overlap. This provides sufficient reward to
outweigh exploration costs, creating a local minimum.

Figure 5: "Good enough" parking with linear decay shows mediocre alignment.

With exponential decay, even 30° misalignment yields very low reward, providing insufficient re-
inforcement for the "good enough" strategy. This forces the policy to discover more sophisticated
maneuvers—notably, reverse parking approaches that allow finer alignment adjustments. The con-
verged policy achieves average reward ∼80 points with near-perfect alignment in most cases.

Conclusion: The choice of reward curve significantly impacts converged policy quality. Exponential
decay with appropriate rates prevents premature convergence to suboptimal strategies, ultimately
achieving higher final performance despite being "harder."

4.5 Ablation Study 3: Necessity of Curriculum Learning

Research question: Can we train from scratch with final configuration (5 m/s, 80% obstacles,
1s stopping)? Observed failure modes: Failure 1: Never learns to stop. Policy navigates to
target but rolls back/forth indefinitely. Root cause: 1s stopping threshold too strict for random
exploration—agent never receives success reward. Failure 2: Only learns obstacle avoidance.
Agent circles parking lot avoiding obstacles but never attempts parking. Root cause: High obstacle
density makes success extremely rare—collision penalties dominate reward signal. Conclusion: For
multi-objective tasks, curriculum learning is essential to balance sparse high-value rewards with
dense low-value rewards.

4.6 Generalization Performance

The policy demonstrates robust zero-shot generalization to unseen parking lot configurations. Key
evidence: single policy for all types: One network handles perpendicular, angled, and parallel
parking without mode switching; unseen layouts: Evaluation episodes use random seeds disjoint

7

from training, generating completely novel obstacle arrangements and target positions; interactive
demo: Users can manually create arbitrary parking scenarios in the web interface, and the policy
adapts in real-time.

Generalization is enabled by two key design choices: (1) aggressive environment randomization
preventing overfitting, and (2) ego-centric observations providing translation/rotation invariance.

5 Limitations and Future Work

5.1 Current Limitations

Soft collision constraints. Our approach uses reward penalties to discourage collisions but provides
no hard safety guarantee. While the converged policy achieves low collision rates (∼0.14 per episode),
it is theoretically possible for the stochastic policy to sample collision-inducing actions. A potential
solution is beam search over rollouts: at each time step, sample multiple action sequences, simulate
their outcomes, and select collision-free paths with highest expected return.

No temporal memory. The current policy is stateless (feedforward MLP), lacking memory of past
observations. This can cause inefficient exploration—e.g., trying a blocked path, backing out, then
trying the same path again because it "forgot" the previous failure. Recurrent architectures (LSTM,
Transformers with positional encoding) could maintain temporal context, encoding information like
"I already explored left and found obstacles."

Limited model capacity. Our policy uses a small 2-layer MLP (128-128-64 neurons). While
sufficient for the current task, more complex real-world scenarios (e.g., multi-floor parking garages,
moving pedestrians) may benefit from larger networks or pre-trained visual feature extractors.

Idealized sensors. The simulation uses perfect LiDAR with no noise, occlusion, or sensor failures.
Real-world deployment requires modeling sensor noise and potentially integrating multiple sensor
modalities (cameras, ultrasonic sensors) for robustness.

5.2 Future Directions

Robustness to sensor noise. Augment training with simulated sensor noise (Gaussian noise on ray
distances, random ray dropouts, false detections) to improve sim-to-real transfer.

Multi-agent scenarios. Extend to dynamic environments with moving obstacles (pedestrians, other
vehicles entering/exiting spots) requiring reactive planning.

Tighter integration with perception. Current work assumes perfect localization of the target pose.
Real-world deployment requires perception modules to estimate target positions from sensor data.

6 Conclusion

We presented ParkRL, a deep reinforcement learning system for autonomous parking that achieves
robust generalization across diverse scenarios through systematic environment randomization and
curriculum learning. Our key contributions include a novel reward design using harmonic mean
and exponential decay that prevents local minima, a three-stage curriculum strategy demonstrated
to be essential for convergence, and comprehensive ablation studies providing insights into sensor
resolution, reward shaping, and training strategies.

The learned policy exhibits emergent human-like behaviors such as reverse parking, achieving 96%
success rate with precise alignment. We deployed the system to an interactive web demonstration,
enabling real-time inference at 60 FPS. Our ablation studies reveal counterintuitive findings—making
rewards harder to achieve leads to better final performance, and curriculum learning is not merely
helpful but necessary for learning multi-objective tasks.

This work demonstrates that end-to-end reinforcement learning can discover sophisticated control
strategies for complex non-holonomic systems, matching and potentially exceeding human-designed
solutions, given appropriate reward design and training curriculum.

Interactive demo: https://pkucuipy.github.io/rl-final

8

https://pkucuipy.github.io/rl-final

References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In

Proceedings of the 26th Annual International Conference on Machine Learning, pages 41–48,
2009.

[2] Paolo Falcone, Francesco Borrelli, Jahan Asgari, H Eric Tseng, and Davor Hrovat. Predictive
active steering control for autonomous vehicle systems. IEEE Transactions on Control Systems
Technology, 15(3):566–580, 2007.

[3] Edouard Leurent. An environment for autonomous driving decision-making. In GitHub reposi-
tory, 2018.

[4] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

9

	Introduction
	Related Work
	Method
	Problem Formulation
	Environment Design: Randomized Parking Lots
	Reward Design
	Training Algorithm and Architecture
	Curriculum Learning Strategy
	Deployment Pipeline

	Experimental Results
	Training Convergence
	Emergent Behaviors
	Ablation Study 1: LiDAR Resolution
	Ablation Study 2: Reward Curve Design
	Ablation Study 3: Necessity of Curriculum Learning
	Generalization Performance

	Limitations and Future Work
	Current Limitations
	Future Directions

	Conclusion

