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1  Introduction 
The ability of cats to rotate mid-air and land on their feet has fascinated scientists for over a century. This 
phenomenon is particularly interesting because cats achieve rotation while conserving angular momentum, starting 
and ending with zero rotational momentum.  

From a computer animation perspective, this represents a challenging problem of creating believable character 
animation for scenarios that are difficult or unethical to capture through motion capture, and such data could not 
adapt to novel situations in real-time. 

In this project, we address these limitations through a physics-based simulation approach powered by deep 
reinforcement learning (DRL). Our approach integrates three key components: 1) a rigid body dynamics model 
based on the flexible spine hypothesis, 2) skeletal rigging to bridge physics simulation and visual rendering, and 3) 
a reinforcement learning framework that discovers physically plausible control policies through interaction with the 
simulated environment. 

Our main contributions are: 

1) A simplified yet effective physics-based model using two rigid bodies and a 3-DOF spherical joint.  
2) A skeletal rigging system that separates efficient physics computation from visual rendering.  
3) Insights into reward shaping for this DRL task, including identification and resolution of local optima through 

iterative design. 

2  Related Work 
Physics-Based Character Animation. Physics-based approaches to character animation have a long history in 
computer graphics. Methods like SIMBICON[1] demonstrated that simple control policies could produce stable 
biped locomotion through rigid body simulation. These approaches ensure physical plausibility that all generated 
motions automatically respect physics laws such as momentum conservation and collision dynamics. Our work 
follows this tradition, using rigid body dynamics and joint constraints to model the cat’s flexible spine. 

Deep Reinforcement Learning for Animation. Recent advances in deep reinforcement learning have enabled 
learning of complex motor skills for simulated characters. DeepMimic[2] showed that RL agents could learn 
acrobatic movements by imitating reference motions while maintaining physical plausibility. Unlike motion capture 
replay, DRL-based approaches can generalize to new situations. Our work applies similar DRL techniques but 
focuses on a task where reference motion is impractical to obtain. 

Cat Biomechanics. The cat righting reflex has been studied extensively in biomechanics literature. Kane and 
Scher[3] provided a dynamical explanation showing that cats primarily use their flexible spine to redistribute angular 
momentum between body segments. While the total angular momentum remains zero, strategic bending and 
twisting of the spine allows net rotation. More recent studies confirm that the spine’s flexibility, rather than leg 



movements or tail use, is the primary mechanism. Our physical model is based on this understanding, focusing on 
spinal degrees of freedom. 

3  Method 

3.1  Physical Model Design 

Our model simplifies the cat’s anatomy while preserving the key biomechanical principle: a flexible spine 
connecting two body segments. We represent the cat as two rigid body capsules connected by a spherical joint: 

 

The joint has three degrees of freedom (DOF) control: 

1) Spine Bending allows the cat to arch/flatten its back (range: 0° to 100°) 
2) Lateral Bending allows side-to-side bending motion (range: ±50°) 
3) Axial Twist allows rotation around the spine axis (range: ±120°) 

 

The joint is actuated through target angular velocity control instead of direct torque application, using Unity’s 
ConfigurableJoint motor system. To maintain numerical stability in the physics engine, we apply moderate air drag. 
We verified that the learned agent can still successfully flip with drag disabled, showing that the strategy is based 
on internal momentum redistribution rather than “swimming” through air resistance. 

The legs and tail are included as decorative visual elements but do not participate in physics calculations. This 
simplification is justified by biomechanics research indicating that the flexible spine is the primary mechanism for 
the righting reflex. 

3.2  From Physics to Visual 

To achieve high-quality visual output while maintaining efficient physics simulation, we employ skeletal rigging to 
separate these concerns. 

 

We obtained a rigged cat model with skeletal structure and skinned mesh. Using Unity’s Animation Rigging system, 
we bind the rotation of the FrontBody capsule to a front spine bone, and the BackBody capsule to a rear spine bone. 



When the physics simulation updates the capsule orientations, the Animation Rigging system propagates these 
rotations to the appropriate bones, and the skinned mesh deforms accordingly. 

With this architecture, physics computation runs on simple primitives for speed and stability, while visual rendering 
uses a detailed mesh for aesthetic quality. The separation allows easy model replacement or refinement without 
changing physics 

3.3  Reinforcement Learning Framework 

We formulate the cat righting task as a Markov Decision Process and solve it using the Proximal Policy 
Optimization[4] (PPO) algorithm. 

Observations. The observations are designed to mimic a real cat’s awareness of its body. For each of the two body 
segments, we use local gravity direction (the direction of gravity in the body’s local coordinate frame) and local 
angular velocity (the rotational velocity of that segment in its own frame). These observations are invariant to the 
cat’s absolute position and orientation in world space and provides sufficient information to determine both the 
current misalignment (via gravity direction) and the rate of change (via angular velocity). 

Policy Network. We use a multi-layer perceptron with 2 hidden layers of 32 units each and tanh activation functions.  

Action Space. A 3-dimensional continuous action representing target angular velocities for the three joint DOFs.  

3.4  Reward Design 

The reward the sum of the following three components: 

Alignment Reward. We measure how well each body segment is aligned with the belly-down orientation. For each 
segment, we compute the dot product between its “belly down” vector and the gravity direction vector, then 
transform this to a score using an exponential function: score = exp(α * (alignment - 1)). Here, alignment is 
normalized to [0, 1] before the exponential. The scale parameter α = 2 sharpens the reward gradient near the goal. 
Since there are two body segments, we take the minimum of the two segment scores: R = min(score_front, 
score_back) - prevR to ensure that both segments must be aligned. 

Efficiency Penalty. To encourage energy-efficient motion, we penalize the magnitude of the action vector, scaled 
by the current alignment score: R = -0.05 * min_score * ||action|| * Δt. The scaling by min_score means the penalty 
increases as the cat gets closer to the goal, encouraging precise control near convergence while allowing aggressive 
motion when far from the target. 

Angular Velocity Penalty. To prevent shaking and encourage smooth motion, we penalize the relative angular 
velocity between the two body segments: R = -0.005 * min_score * ||ω_front - ω_back|| * Δt. 

4  Implementation and Results 

4.1  Training Details 

We implemented the environment in Unity 6.0 using ML-Agents toolkit[5]. Training was conducted with 16 parallel 
environment instances, each starting with a random initial orientation. Episodes last 3 seconds (150 fixed timesteps 
at 50 Hz simulation rate), after which the environment resets regardless of success. Training converged after 
approximately 2 hours.  

 



4.2  Results 

The learned policy exhibits smooth, coordinated control of all three spinal DOFs to achieve rotation, and the motion 
appears natural without abrupt jerky movements. 

A key advantage of this RL-based approach over motion capture is real-time adaptability. We tested the agent’s 
response to mid-flight disturbances by manually rotating the cat during execution. The agent continuously adapts, 
treating each disturbed state as a new starting condition and adjusting its strategy accordingly. This demonstrates 
the policy’s generalization capability that it has learned a robust mapping from body state to control, not a fixed 
trajectory. 

4.3  Evaluation and Future Work 

This project demonstrates the value of physics-based simulation combined with reinforcement learning for creating 
responsive character animation. By modeling the underlying physics and allowing an agent to discover control 
strategies through trial and error, we obtain animations that are both physically plausible and adaptive to novel 
situations. Our approach demonstrates that reinforcement learning can discover effective control policies for the cat 
righting reflex from scratch, without motion capture data or hand-designed controllers.  

However, several limitations should be noted: 

Model Simplification. Our two-body model is a significant simplification of real cat anatomy. While adequate for 
demonstrating the core mechanism, it lacks the multi-segment spine, articulated limbs, and tail that contribute to 
real cat agility. Adding more body segments would increase realism but also expand the action space, likely 
requiring longer training and more sophisticated exploration strategies. 

Landing Dynamics. Our simulation ends once the cat achieves belly-down orientation. A complete system would 
include ground contact, impact absorption, and landing stabilization. These are interesting directions for future work. 
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