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1 Introduction

The ability of cats to rotate mid-air and land on their feet has fascinated scientists for over a century. This
phenomenon is particularly interesting because cats achieve rotation while conserving angular momentum, starting
and ending with zero rotational momentum.

From a computer animation perspective, this represents a challenging problem of creating believable character
animation for scenarios that are difficult or unethical to capture through motion capture, and such data could not
adapt to novel situations in real-time.

In this project, we address these limitations through a physics-based simulation approach powered by deep
reinforcement learning (DRL). Our approach integrates three key components: 1) a rigid body dynamics model
based on the flexible spine hypothesis, 2) skeletal rigging to bridge physics simulation and visual rendering, and 3)
a reinforcement learning framework that discovers physically plausible control policies through interaction with the
simulated environment.

Our main contributions are:

1) A simplified yet effective physics-based model using two rigid bodies and a 3-DOF spherical joint.

2) A skeletal rigging system that separates efficient physics computation from visual rendering.

3) Insights into reward shaping for this DRL task, including identification and resolution of local optima through
iterative design.

2 Related Work

Physics-Based Character Animation. Physics-based approaches to character animation have a long history in
computer graphics. Methods like SIMBICON'"! demonstrated that simple control policies could produce stable
biped locomotion through rigid body simulation. These approaches ensure physical plausibility that all generated
motions automatically respect physics laws such as momentum conservation and collision dynamics. Our work
follows this tradition, using rigid body dynamics and joint constraints to model the cat’s flexible spine.

Deep Reinforcement Learning for Animation. Recent advances in deep reinforcement learning have enabled
learning of complex motor skills for simulated characters. DeepMimic'®' showed that RL agents could learn
acrobatic movements by imitating reference motions while maintaining physical plausibility. Unlike motion capture
replay, DRL-based approaches can generalize to new situations. Our work applies similar DRL techniques but
focuses on a task where reference motion is impractical to obtain.

Cat Biomechanics. The cat righting reflex has been studied extensively in biomechanics literature. Kane and
Scher'® provided a dynamical explanation showing that cats primarily use their flexible spine to redistribute angular
momentum between body segments. While the total angular momentum remains zero, strategic bending and
twisting of the spine allows net rotation. More recent studies confirm that the spine’s flexibility, rather than leg



movements or tail use, is the primary mechanism. Our physical model is based on this understanding, focusing on
spinal degrees of freedom.

3 Method

3.1 Physical Model Design

Our model simplifies the cat’s anatomy while preserving the key biomechanical principle: a flexible spine
connecting two body segments. We represent the cat as two rigid body capsules connected by a spherical joint:

BackBody Joint FrontBody

The joint has three degrees of freedom (DOF) control:

1) Spine Bending allows the cat to arch/flatten its back (range: 0° to 100°)
2) Lateral Bending allows side-to-side bending motion (range: +50°)
3) Axial Twist allows rotation around the spine axis (range: +120°)
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DoF 1: Spine Bending (0° — 100°) DoF 2: Lateral Bending (+50°) DoF 3: Twisting (+120°)

The joint is actuated through target angular velocity control instead of direct torque application, using Unity’s
ConfigurableJoint motor system. To maintain numerical stability in the physics engine, we apply moderate air drag.
We verified that the learned agent can still successfully flip with drag disabled, showing that the strategy is based
on internal momentum redistribution rather than “swimming” through air resistance.

The legs and tail are included as decorative visual elements but do not participate in physics calculations. This
simplification is justified by biomechanics research indicating that the flexible spine is the primary mechanism for
the righting reflex.

3.2 From Physics to Visual

To achieve high-quality visual output while maintaining efficient physics simulation, we employ skeletal rigging to
separate these concerns.

spine 1 spine 2

body 1 body 2

Physical Model

Rigged Model Mapping between two Models

We obtained a rigged cat model with skeletal structure and skinned mesh. Using Unity’s Animation Rigging system,
we bind the rotation of the FrontBody capsule to a front spine bone, and the BackBody capsule to a rear spine bone.



When the physics simulation updates the capsule orientations, the Animation Rigging system propagates these
rotations to the appropriate bones, and the skinned mesh deforms accordingly.

With this architecture, physics computation runs on simple primitives for speed and stability, while visual rendering
uses a detailed mesh for aesthetic quality. The separation allows easy model replacement or refinement without
changing physics

3.3 Reinforcement Learning Framework

We formulate the cat righting task as a Markov Decision Process and solve it using the Proximal Policy
Optimization'” (PPO) algorithm.

Observations. The observations are designed to mimic a real cat’s awareness of its body. For each of the two body
segments, we use local gravity direction (the direction of gravity in the body’s local coordinate frame) and local
angular velocity (the rotational velocity of that segment in its own frame). These observations are invariant to the
cat’s absolute position and orientation in world space and provides sufficient information to determine both the
current misalignment (via gravity direction) and the rate of change (via angular velocity).

Policy Network. We use a multi-layer perceptron with 2 hidden layers of 32 units each and tanh activation functions.
Action Space. A 3-dimensional continuous action representing target angular velocities for the three joint DOFs.
3.4 Reward Design

The reward the sum of the following three components:

Alignment Reward. We measure how well each body segment is aligned with the belly-down orientation. For each
segment, we compute the dot product between its “belly down” vector and the gravity direction vector, then
transform this to a score using an exponential function: score = exp(a * (alignment - 1)). Here, alignment is
normalized to [0, 1] before the exponential. The scale parameter a = 2 sharpens the reward gradient near the goal.
Since there are two body segments, we take the minimum of the two segment scores: R = min(score_front,
score_back) - prevR to ensure that both segments must be aligned.

Efficiency Penalty. To encourage energy-efficient motion, we penalize the magnitude of the action vector, scaled
by the current alignment score: R = -0.05 * min_score * ||laction|| * At. The scaling by min_score means the penalty
increases as the cat gets closer to the goal, encouraging precise control near convergence while allowing aggressive
motion when far from the target.

Angular Velocity Penalty. To prevent shaking and encourage smooth motion, we penalize the relative angular
velocity between the two body segments: R = -0.005 * min_score * ||w_front - o_back]|| * At.

4 Implementation and Results

4.1 Training Details

We implemented the environment in Unity 6.0 using ML-Agents toolkit'', Training was conducted with 16 parallel
environment instances, each starting with a random initial orientation. Episodes last 3 seconds (150 fixed timesteps
at 50 Hz simulation rate), after which the environment resets regardless of success. Training converged after
approximately 2 hours.



4.2 Results

The learned policy exhibits smooth, coordinated control of all three spinal DOFs to achieve rotation, and the motion
appears natural without abrupt jerky movements.

A key advantage of this RL-based approach over motion capture is real-time adaptability. We tested the agent’s
response to mid-flight disturbances by manually rotating the cat during execution. The agent continuously adapts,
treating each disturbed state as a new starting condition and adjusting its strategy accordingly. This demonstrates
the policy’s generalization capability that it has learned a robust mapping from body state to control, not a fixed
trajectory.

4.3 Evaluation and Future Work

This project demonstrates the value of physics-based simulation combined with reinforcement learning for creating
responsive character animation. By modeling the underlying physics and allowing an agent to discover control
strategies through trial and error, we obtain animations that are both physically plausible and adaptive to novel
situations. Our approach demonstrates that reinforcement learning can discover effective control policies for the cat
righting reflex from scratch, without motion capture data or hand-designed controllers.

However, several limitations should be noted:

Model Simplification. Our two-body model is a significant simplification of real cat anatomy. While adequate for
demonstrating the core mechanism, it lacks the multi-segment spine, articulated limbs, and tail that contribute to
real cat agility. Adding more body segments would increase realism but also expand the action space, likely
requiring longer training and more sophisticated exploration strategies.

Landing Dynamics. Our simulation ends once the cat achieves belly-down orientation. A complete system would
include ground contact, impact absorption, and landing stabilization. These are interesting directions for future work.
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